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The Adjoint of a Linear Operator

1. Label the following statements as true or false. Assume that the underlying inner product
spaces are finite-dimensional.

(a) Every linear operator has an adjoint.

(b) Every linear operator on V has the form x →
〈

x, y
〉

for some y ∈ V.

(c) For every linear operator T on V and every ordered basis β for V, we have [T∗]β = ([T]β)∗.

(d) The adjoint of a linear operator is unique.

(e) For any linear operators T and U and scalars a and b.

(aT + bU)∗ = aT∗ + bU∗.

(f) For any n× n matrix A, we have (LA)
∗ = LA∗ .

(g) For any linear operator T, we have (T∗)∗ = T.

2. For each of the following inner product spaces V (over F) and linear transformations g : V → F,
find a vector y such that g(x) =

〈
x, y
〉

for all x ∈ V.

(a) V = R3, g(a1, a2, a3) = a1 − 2a2 + 4a3

(b) V = C2, g(z1, z2) = z1 − 2z2

(c) V = P2(R) with
〈

f , h
〉
=
∫ 1

0
f (t)h(t) dt, g( f ) = f (0) + f ′(1)

3. For each of the following inner product spaces V and linear operators T on V, evaluate T∗ at
the given vector in V.

(a) V = R2, T(a, b) = (2a + b, a− 3b), x = (3, 5).

(b) V = C2, T(z1, z2) = (2z1 + iz2, (1− i)z1), x = (3− i, 1 + 2i).

(c) V = P1(R) with
〈

f , g
〉
=
∫ 1

−1
f (t)g(t) dt, T( f ) = f ′ + 3 f , f (t) = 4− 2t.

4. Using a matrix argument, prove the following for nonsquare m× n matrices A and B.

(a) (A + B)∗ = A∗ + B∗ ;

(b) (cA)∗ = cA∗ for all c ∈ F ;

(c) (AB)∗ = B∗A∗ ;

(d) A∗∗ = A ;

(e) I∗ = I.

5. Let T be a linear operator on an inner product space V. Let U1 = T + T∗ and U2 = TT∗. Prove
that U1 = U∗1 and U2 = U∗2 .



6. Give an example of a linear operator T on an inner product space V such that N(T) 6= N(T∗).

7. Let V be a finite-dimensional inner product space, and let T be a linear operator on V. Prove
that if T is invertible, then T∗ is invertible and (T∗)−1 = (T−1)∗.

8. Prove that if V = W ⊕W⊥ and T is the projection on W along W⊥, then T = T∗.

Hint: Recall that N(T) = W⊥.

9. Let T be a linear operator on an inner product space V. Prove that ‖T(x)‖ = ‖x‖ for all x ∈ V
if and only if

〈
T(x), T(y)

〉
=
〈

x, y
〉

for all x, y ∈ V.

10. For a linear operator T on an inner product space V, prove that T∗T = T0 implies T = T0. Is the
same result true if we assume that TT∗ = T0?

11. Let V be an inner product space, and let T be a linear operator on V. Prove the following results.

(a) R(T∗)⊥ = N(T).

(b) If V is finite-dimensional, then R(T∗) = N(T)⊥.

12. Let T be a linear operator on a finite-dimensional inner product space V. Prove the following
results.

(a) N(T∗T) = N(T). Deduce that rank(T∗T) = rank(T).

(b) rank(T) = rank(T∗). Deduce from (a) that rank(TT∗) = rank(T).

(c) For any n× n matrix A, rank(A∗A) = rank(AA∗) = rank(A).

13. Let V be an inner product space, and let y, z ∈ V. Define T : V → V by

T(x) =
〈

x, y
〉
z

for all x ∈ V. First prove that T is linear. Then show that T∗ exists, and find an explicit
expression for it.

The following definition is used in Exercises 14-16 and is an extension of the definition of the adjoint
of a linear operator.

Definition. Let T : V → W be a linear transformation, where V and W are finite-dimensional
inner product spaces with inner products

〈
·, ·
〉

1 and
〈
·, ·
〉

2, respectively. A function T∗ : W → V is
called an adjoint of T if

〈
T(x), y

〉
2 =

〈
x, T∗(y)

〉
1 for all x ∈ V and y ∈W.

14. Let T : V →W be a linear transformation, where V and W are finite-dimensional inner product
spaces with inner products

〈
·, ·
〉

1 and
〈
·, ·
〉

2, respectively. Prove the following results.

(a) There is a unique adjoint T∗ of T, and T∗ is linear.

(b) If β and γ are orthonormal bases for V and W, respectively, then [T∗]βγ = ([T]γβ)
∗.

(c) rank(T∗) = rank(T).

(d)
〈

T∗(x), y
〉

1 =
〈

x, T(y)
〉

2 for all x ∈W and y ∈ V.

(e) For all x ∈ V, T∗T(x) = 0 if and only if T(x) = 0.

15. We now recall the result : Let V be an inner product space, and let T and U be linear operators
on V. Then

(a) (T + U)∗ = T∗ + U∗ ;



(b) (cT)∗ = cT∗ for any c ∈ F ;

(c) (TU)∗ = U∗T∗ ;

(d) T∗∗ = T ;

State and prove a result that extends the four parts (a)-(d) of the above result, using the preced-
ing definition.

16. Let T : V →W be a linear transformation, where V and W are finite-dimensional inner product
spaces. Prove that (R(T∗))⊥ = N(T), using the preceding definition.

17. Let A be an n× n matrix. Prove that det(A∗) = det(A).

18. Suppose that A is an m× n matrix in which no two columns are identical. Prove that A∗A is a
diagonal matrix if and only if every pair of columns of A is orthogonal.

19. For each of the sets of data that follows, use the least squares approximation to find the best fits
with both (i) a linear function and (ii) a quadratic function. Compute the error E in both cases.

(a) {(−3, 9), (−2, 6), (0, 2), (1, 1)}
(b) {(1, 2), (3, 4), (5, 7), (7, 9), (9, 12)}
(c) {(−2, 4), (−1, 3), (0, 1), (1,−1), (2,−3)}

20. In physics, Hooke’s law states that (within certain limits) there is a linear relationship between
the length x of a spring and the force y applied to (or exerted by) the spring. That is, y = cx + d,
where c is called the spring constant. Use the following data to estimate the spring constant
(the length is given in inches and the force is given in pounds).

Length Force
x y

3.5 1.0
4.0 2.2
4.5 2.8
5.0 4.3

21. Find the minimal solution to each of the following systems of linear equations.

x + 2y− z = 12a) x + 2y− z = 1
2x + 3y + z = 2
4x + 7y− z = 4

b)

x + y− z = 0
2x− y + z = 3
x− y + z = 2

c) x + y + z− w = 1
2x− y + w = 1

d)

22. Consider the problem of finding the least squares line y = ct + d corresponding to the m obser-
vations (t1, y1), (t2, y2), . . . , (tm, ym).

(a) We recall the result : Let A ∈ Mm×n(F) and y ∈ Fm. Then there exists x0 ∈ Fn such that
(A∗A)x0 = A∗y and ‖Ax0 − y‖ ≤ ‖Ax− y‖ for all x ∈ Fn. Furthermore, if rank(A) = n,
then x0 = (A∗A)−1A∗y.



Show that the equation (A∗A)x0 = A∗y takes the form of the normal equations:(
m

∑
i=1

t2
i

)
c +

(
m

∑
i=1

ti

)
d =

m

∑
i=1

tiyi

and (
m

∑
i=1

ti

)
c + md =

m

∑
i=1

yi.

These equations may also be obtained from the error E by setting the partial derivatives of
E with respect to both c and d equal to zero.

(b) Use the second normal equation of (a) to show that the least squares line must pass through
the center of mass, (t, y), where

t =
1
m

m

∑
i=1

ti and y =
1
m

m

∑
i=1

yi.

23. Let V be the vector space of all sequences σ in F (where F = R or F = C) such that σ(n) 6= 0

for only finitely many positive integers n. For σ, µ ∈ V, we define
〈
σ, µ

〉
=

∞
∑

n=1
σ(n)µ(n). Since

all but a finite number of terms of the series are zero, the series converges. For each positive
integer n, let en be the sequence defined by en(k) = δn,k, where δn,k is the Kronecker delta. We
proved that {e1, e2, . . .} is an orthonormal basis for V. Define T : V → V by

T(σ)(k) =
∞

∑
i=k

σ(i) for every positive integer k.

Notice that the infinite series in the definition of T converges because σ(i) 6= 0 for only finitely
many i.

(a) Prove that T is a linear operator on V.

(b) Prove that for any positive integer n, T(en) =
n

∑
i=1

ei.

(c) Prove that T has no adjoint.
Hint: By way of contradiction, suppose that T∗ exists. Prove that for any positive integer
n, T∗(en)(k) 6= 0 for infinitely many k.
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