sam.nitk.ac.in

nitksam@gmail.com

Advanced Linear Algebra (MA 409) Problem Sheet - 24

The Adjoint of a Linear Operator

- 1. Label the following statements as true or false. Assume that the underlying inner product spaces are finite-dimensional.
 - (a) Every linear operator has an adjoint.
 - (b) Every linear operator on *V* has the form $x \to \langle x, y \rangle$ for some $y \in V$.
 - (c) For every linear operator *T* on *V* and every ordered basis β for *V*, we have $[T^*]_{\beta} = ([T]_{\beta})^*$.
 - (d) The adjoint of a linear operator is unique.
 - (e) For any linear operators *T* and *U* and scalars *a* and *b*.

$$(aT + bU)^* = aT^* + bU^*.$$

- (f) For any $n \times n$ matrix A, we have $(L_A)^* = L_{A^*}$.
- (g) For any linear operator *T*, we have $(T^*)^* = T$.
- 2. For each of the following inner product spaces *V* (over *F*) and linear transformations $g : V \to F$, find a vector *y* such that $g(x) = \langle x, y \rangle$ for all $x \in V$.
 - (a) $V = \mathbb{R}^3$, $g(a_1, a_2, a_3) = a_1 2a_2 + 4a_3$

(b)
$$V = \mathbb{C}^2$$
, $g(z_1, z_2) = z_1 - 2z_2$
(c) $V = P_2(\mathbb{R})$ with $\langle f, h \rangle = \int_0^1 f(t)h(t) dt$, $g(f) = f(0) + f'(1)$

3. For each of the following inner product spaces V and linear operators T on V, evaluate T^* at the given vector in V.

(a)
$$V = \mathbb{R}^2$$
, $T(a, b) = (2a + b, a - 3b)$, $x = (3, 5)$.
(b) $V = \mathbb{C}^2$, $T(z_1, z_2) = (2z_1 + iz_2, (1 - i)z_1)$, $x = (3 - i, 1 + 2i)$.
(c) $V = P_1(\mathbb{R})$ with $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) dt$, $T(f) = f' + 3f$, $f(t) = 4 - 2t$.

- 4. Using a matrix argument, prove the following for nonsquare $m \times n$ matrices *A* and *B*.
 - (a) $(A+B)^* = A^* + B^*$;
 - (b) $(cA)^* = \overline{c}A^*$ for all $c \in F$;
 - (c) $(AB)^* = B^*A^*$;
 - (d) $A^{**} = A$;
 - (e) $I^* = I$.
- 5. Let *T* be a linear operator on an inner product space *V*. Let $U_1 = T + T^*$ and $U_2 = TT^*$. Prove that $U_1 = U_1^*$ and $U_2 = U_2^*$.

- 6. Give an example of a linear operator *T* on an inner product space *V* such that $N(T) \neq N(T^*)$.
- 7. Let *V* be a finite-dimensional inner product space, and let *T* be a linear operator on *V*. Prove that if *T* is invertible, then T^* is invertible and $(T^*)^{-1} = (T^{-1})^*$.
- 8. Prove that if $V = W \oplus W^{\perp}$ and *T* is the projection on *W* along W^{\perp} , then $T = T^*$. *Hint:* Recall that $N(T) = W^{\perp}$.
- 9. Let *T* be a linear operator on an inner product space *V*. Prove that ||T(x)|| = ||x|| for all $x \in V$ if and only if $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for all $x, y \in V$.
- 10. For a linear operator *T* on an inner product space *V*, prove that $T^*T = T_0$ implies $T = T_0$. Is the same result true if we assume that $TT^* = T_0$?
- 11. Let *V* be an inner product space, and let *T* be a linear operator on *V*. Prove the following results.
 - (a) $R(T^*)^{\perp} = N(T)$.
 - (b) If *V* is finite-dimensional, then $R(T^*) = N(T)^{\perp}$.
- 12. Let *T* be a linear operator on a finite-dimensional inner product space *V*. Prove the following results.
 - (a) $N(T^*T) = N(T)$. Deduce that $rank(T^*T) = rank(T)$.
 - (b) $rank(T) = rank(T^*)$. Deduce from (a) that $rank(TT^*) = rank(T)$.
 - (c) For any $n \times n$ matrix A, $rank(A^*A) = rank(AA^*) = rank(A)$.
- 13. Let *V* be an inner product space, and let $y, z \in V$. Define $T : V \to V$ by

$$T(x) = \langle x, y \rangle z$$

for all $x \in V$. First prove that *T* is linear. Then show that T^* exists, and find an explicit expression for it.

The following definition is used in Exercises 14-16 and is an extension of the definition of the adjoint of a linear operator.

Definition. Let $T : V \to W$ be a linear transformation, where V and W are finite-dimensional inner product spaces with inner products $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$, respectively. A function $T^* : W \to V$ is called an **adjoint** of T if $\langle T(x), y \rangle_2 = \langle x, T^*(y) \rangle_1$ for all $x \in V$ and $y \in W$.

- 14. Let $T : V \to W$ be a linear transformation, where *V* and *W* are finite-dimensional inner product spaces with inner products $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$, respectively. Prove the following results.
 - (a) There is a unique adjoint T^* of T, and T^* is linear.
 - (b) If β and γ are orthonormal bases for *V* and *W*, respectively, then $[T^*]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^*$.
 - (c) $rank(T^*) = rank(T)$.
 - (d) $\langle T^*(x), y \rangle_1 = \langle x, T(y) \rangle_2$ for all $x \in W$ and $y \in V$.
 - (e) For all $x \in V$, $T^*T(x) = 0$ if and only if T(x) = 0.
- 15. We now recall the result : Let *V* be an inner product space, and let *T* and *U* be linear operators on *V*. Then
 - (a) $(T+U)^* = T^* + U^*$;

- (b) $(cT)^* = \overline{c}T^*$ for any $c \in F$;
- (c) $(TU)^* = U^*T^*$;
- (d) $T^{**} = T$;

State and prove a result that extends the four parts (a)-(d) of the above result, using the preceding definition.

- 16. Let $T : V \to W$ be a linear transformation, where *V* and *W* are finite-dimensional inner product spaces. Prove that $(R(T^*))^{\perp} = N(T)$, using the preceding definition.
- 17. Let *A* be an $n \times n$ matrix. Prove that $det(A^*) = \overline{det(A)}$.
- 18. Suppose that *A* is an $m \times n$ matrix in which no two columns are identical. Prove that A^*A is a diagonal matrix if and only if every pair of columns of *A* is orthogonal.
- 19. For each of the sets of data that follows, use the least squares approximation to find the best fits with both (i) a linear function and (ii) a quadratic function. Compute the error *E* in both cases.
 - (a) $\{(-3,9), (-2,6), (0,2), (1,1)\}$
 - (b) $\{(1,2), (3,4), (5,7), (7,9), (9,12)\}$
 - (c) $\{(-2,4), (-1,3), (0,1), (1,-1), (2,-3)\}$
- 20. In physics, Hooke's law states that (within certain limits) there is a linear relationship between the length *x* of a spring and the force *y* applied to (or exerted by) the spring. That is, y = cx + d, where *c* is called the **spring constant**. Use the following data to estimate the spring constant (the length is given in inches and the force is given in pounds).

Length	Force
х	У
3.5	1.0
4.0	2.2
4.5	2.8
5.0	4.3

- 21. Find the minimal solution to each of the following systems of linear equations.
 - a) x + 2y z = 12b) x + 2y - z = 1 2x + 3y + z = 2 4x + 7y - z = 4c) x + y - z = 0 2x - y + z = 3 x - y + z = 2d) x + y + z - w = 12x - y + w = 1
- 22. Consider the problem of finding the least squares line y = ct + d corresponding to the *m* observations $(t_1, y_1), (t_2, y_2), \dots, (t_m, y_m)$.
 - (a) We recall the result : Let $A \in M_{m \times n}(F)$ and $y \in F^m$. Then there exists $x_0 \in F^n$ such that $(A^*A)x_0 = A^*y$ and $||Ax_0 y|| \le ||Ax y||$ for all $x \in F^n$. Furthermore, if rank(A) = n, then $x_0 = (A^*A)^{-1}A^*y$.

Show that the equation $(A^*A)x_0 = A^*y$ takes the form of the *normal equations*:

$$\left(\sum_{i=1}^{m} t_i^2\right) c + \left(\sum_{i=1}^{m} t_i\right) d = \sum_{i=1}^{m} t_i y_i$$

and

$$\left(\sum_{i=1}^m t_i\right)c + md = \sum_{i=1}^m y_i.$$

These equations may also be obtained from the error *E* by setting the partial derivatives of *E* with respect to both *c* and *d* equal to zero.

(b) Use the second normal equation of (a) to show that the least squares line must pass through the center of mass, (\bar{t}, \bar{y}) , where

$$\overline{t} = rac{1}{m}\sum_{i=1}^m t_i$$
 and $\overline{y} = rac{1}{m}\sum_{i=1}^m y_i$.

23. Let *V* be the vector space of all sequences σ in *F* (where $F = \mathbb{R}$ or $F = \mathbb{C}$) such that $\sigma(n) \neq 0$ for only finitely many positive integers *n*. For $\sigma, \mu \in V$, we define $\langle \sigma, \mu \rangle = \sum_{n=1}^{\infty} \sigma(n) \overline{\mu(n)}$. Since all but a finite number of terms of the series are zero, the series converges. For each positive integer *n*, let e_n be the sequence defined by $e_n(k) = \delta_{n,k}$, where $\delta_{n,k}$ is the Kronecker delta. We proved that $\{e_1, e_2, \ldots\}$ is an orthonormal basis for *V*. Define $T : V \to V$ by

$$T(\sigma)(k) = \sum_{i=k}^{\infty} \sigma(i)$$
 for every positive integer k.

Notice that the infinite series in the definition of *T* converges because $\sigma(i) \neq 0$ for only finitely many *i*.

- (a) Prove that *T* is a linear operator on *V*.
- (b) Prove that for any positive integer *n*, $T(e_n) = \sum_{i=1}^{n} e_i$.
- (c) Prove that *T* has no adjoint.

Hint: By way of contradiction, suppose that T^* exists. Prove that for any positive integer n, $T^*(e_n)(k) \neq 0$ for infinitely many k.