Department of Mathematical and Computational Sciences
 National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in
nitksam@gmail.com

Advanced Linear Algebra (MA 409)
 Problem Sheet-24
 The Adjoint of a Linear Operator

1. Label the following statements as true or false. Assume that the underlying inner product spaces are finite-dimensional.
(a) Every linear operator has an adjoint.
(b) Every linear operator on V has the form $x \rightarrow\langle x, y\rangle$ for some $y \in V$.
(c) For every linear operator T on V and every ordered basis β for V, we have $\left[T^{*}\right]_{\beta}=\left([T]_{\beta}\right)^{*}$.
(d) The adjoint of a linear operator is unique.
(e) For any linear operators T and U and scalars a and b.

$$
(a T+b U)^{*}=a T^{*}+b U^{*} .
$$

(f) For any $n \times n$ matrix A, we have $\left(L_{A}\right)^{*}=L_{A^{*}}$.
(g) For any linear operator T, we have $\left(T^{*}\right)^{*}=T$.
2. For each of the following inner product spaces V (over F) and linear transformations $g: V \rightarrow F$, find a vector y such that $g(x)=\langle x, y\rangle$ for all $x \in V$.
(a) $V=\mathbb{R}^{3}, g\left(a_{1}, a_{2}, a_{3}\right)=a_{1}-2 a_{2}+4 a_{3}$
(b) $V=\mathbb{C}^{2}, g\left(z_{1}, z_{2}\right)=z_{1}-2 z_{2}$
(c) $V=P_{2}(\mathbb{R})$ with $\langle f, h\rangle=\int_{0}^{1} f(t) h(t) d t, \quad g(f)=f(0)+f^{\prime}(1)$
3. For each of the following inner product spaces V and linear operators T on V, evaluate T^{*} at the given vector in V.
(a) $V=\mathbb{R}^{2}, T(a, b)=(2 a+b, a-3 b), x=(3,5)$.
(b) $V=\mathbb{C}^{2}, T\left(z_{1}, z_{2}\right)=\left(2 z_{1}+i z_{2},(1-i) z_{1}\right), x=(3-i, 1+2 i)$.
(c) $V=P_{1}(\mathbb{R})$ with $\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t, \quad T(f)=f^{\prime}+3 f, f(t)=4-2 t$.
4. Using a matrix argument, prove the following for nonsquare $m \times n$ matrices A and B.
(a) $(A+B)^{*}=A^{*}+B^{*}$;
(b) $(c A)^{*}=\bar{c} A^{*}$ for all $c \in F$;
(c) $(A B)^{*}=B^{*} A^{*}$;
(d) $A^{* *}=A$;
(e) $I^{*}=I$.
5. Let T be a linear operator on an inner product space V. Let $U_{1}=T+T^{*}$ and $U_{2}=T T^{*}$. Prove that $U_{1}=U_{1}^{*}$ and $U_{2}=U_{2}^{*}$.
6. Give an example of a linear operator T on an inner product space V such that $N(T) \neq N\left(T^{*}\right)$.
7. Let V be a finite-dimensional inner product space, and let T be a linear operator on V. Prove that if T is invertible, then T^{*} is invertible and $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$.
8. Prove that if $V=W \oplus W^{\perp}$ and T is the projection on W along W^{\perp}, then $T=T^{*}$. Hint: Recall that $N(T)=W^{\perp}$.
9. Let T be a linear operator on an inner product space V. Prove that $\|T(x)\|=\|x\|$ for all $x \in V$ if and only if $\langle T(x), T(y)\rangle=\langle x, y\rangle$ for all $x, y \in V$.
10. For a linear operator T on an inner product space V, prove that $T^{*} T=T_{0} \operatorname{implies} T=T_{0}$. Is the same result true if we assume that $T T^{*}=T_{0}$?
11. Let V be an inner product space, and let T be a linear operator on V. Prove the following results.
(a) $R\left(T^{*}\right)^{\perp}=N(T)$.
(b) If V is finite-dimensional, then $R\left(T^{*}\right)=N(T)^{\perp}$.
12. Let T be a linear operator on a finite-dimensional inner product space V. Prove the following results.
(a) $N\left(T^{*} T\right)=N(T)$. Deduce that $\operatorname{rank}\left(T^{*} T\right)=\operatorname{rank}(T)$.
(b) $\operatorname{rank}(T)=\operatorname{rank}\left(T^{*}\right)$. Deduce from (a) that $\operatorname{rank}\left(T T^{*}\right)=\operatorname{rank}(T)$.
(c) For any $n \times n$ matrix $A, \operatorname{rank}\left(A^{*} A\right)=\operatorname{rank}\left(A A^{*}\right)=\operatorname{rank}(A)$.
13. Let V be an inner product space, and let $y, z \in V$. Define $T: V \rightarrow V$ by

$$
T(x)=\langle x, y\rangle z
$$

for all $x \in V$. First prove that T is linear. Then show that T^{*} exists, and find an explicit expression for it.

The following definition is used in Exercises 14-16 and is an extension of the definition of the adjoint of a linear operator.

Definition. Let $T: V \rightarrow W$ be a linear transformation, where V and W are finite-dimensional inner product spaces with inner products $\langle\cdot, \cdot\rangle_{1}$ and $\langle\cdot, \cdot\rangle_{2}$, respectively. A function $T^{*}: W \rightarrow V$ is called an adjoint of T if $\langle T(x), y\rangle_{2}=\left\langle x, T^{*}(y)\right\rangle_{1}$ for all $x \in V$ and $y \in W$.
14. Let $T: V \rightarrow W$ be a linear transformation, where V and W are finite-dimensional inner product spaces with inner products $\langle\cdot, \cdot\rangle_{1}$ and $\langle\cdot, \cdot\rangle_{2}$, respectively. Prove the following results.
(a) There is a unique adjoint T^{*} of T, and T^{*} is linear.
(b) If β and γ are orthonormal bases for V and W, respectively, then $\left[T^{*}\right]_{\gamma}^{\beta}=\left([T]_{\beta}^{\gamma}\right)^{*}$.
(c) $\operatorname{rank}\left(T^{*}\right)=\operatorname{rank}(T)$.
(d) $\left\langle T^{*}(x), y\right\rangle_{1}=\langle x, T(y)\rangle_{2}$ for all $x \in W$ and $y \in V$.
(e) For all $x \in V, T^{*} T(x)=0$ if and only if $T(x)=0$.
15. We now recall the result : Let V be an inner product space, and let T and U be linear operators on V. Then
(a) $(T+U)^{*}=T^{*}+U^{*}$;
(b) $(c T)^{*}=\bar{c} T^{*}$ for any $c \in F$;
(c) $(T U)^{*}=U^{*} T^{*}$;
(d) $T^{* *}=T$;

State and prove a result that extends the four parts (a)-(d) of the above result, using the preceding definition.
16. Let $T: V \rightarrow W$ be a linear transformation, where V and W are finite-dimensional inner product spaces. Prove that $\left(R\left(T^{*}\right)\right)^{\perp}=N(T)$, using the preceding definition.
17. Let A be an $n \times n$ matrix. Prove that $\operatorname{det}\left(A^{*}\right)=\overline{\operatorname{det}(A)}$.
18. Suppose that A is an $m \times n$ matrix in which no two columns are identical. Prove that $A^{*} A$ is a diagonal matrix if and only if every pair of columns of A is orthogonal.
19. For each of the sets of data that follows, use the least squares approximation to find the best fits with both (i) a linear function and (ii) a quadratic function. Compute the error E in both cases.
(a) $\{(-3,9),(-2,6),(0,2),(1,1)\}$
(b) $\{(1,2),(3,4),(5,7),(7,9),(9,12)\}$
(c) $\{(-2,4),(-1,3),(0,1),(1,-1),(2,-3)\}$
20. In physics, Hooke's law states that (within certain limits) there is a linear relationship between the length x of a spring and the force y applied to (or exerted by) the spring. That is, $y=c x+d$, where c is called the spring constant. Use the following data to estimate the spring constant (the length is given in inches and the force is given in pounds).

Length x	Force y
3.5	1.0
4.0	2.2
4.5	2.8
5.0	4.3

21. Find the minimal solution to each of the following systems of linear equations.
a) $x+2 y-z=12$
b) $x+2 y-z=1$
$2 x+3 y+z=2$
$4 x+7 y-z=4$
c) $x+y-z=0$
$2 x-y+z=3$
$x-y+z=2$
d) $x+y+z-w=1$
$2 x-y+w=1$
22. Consider the problem of finding the least squares line $y=c t+d$ corresponding to the m observations $\left(t_{1}, y_{1}\right),\left(t_{2}, y_{2}\right), \ldots,\left(t_{m}, y_{m}\right)$.
(a) We recall the result : Let $A \in M_{m \times n}(F)$ and $y \in F^{m}$. Then there exists $x_{0} \in F^{n}$ such that $\left(A^{*} A\right) x_{0}=A^{*} y$ and $\left\|A x_{0}-y\right\| \leq\|A x-y\|$ for all $x \in F^{n}$. Furthermore, if $\operatorname{rank}(A)=n$, then $x_{0}=\left(A^{*} A\right)^{-1} A^{*} y$.

Show that the equation $\left(A^{*} A\right) x_{0}=A^{*} y$ takes the form of the normal equations:

$$
\left(\sum_{i=1}^{m} t_{i}^{2}\right) c+\left(\sum_{i=1}^{m} t_{i}\right) d=\sum_{i=1}^{m} t_{i} y_{i}
$$

and

$$
\left(\sum_{i=1}^{m} t_{i}\right) c+m d=\sum_{i=1}^{m} y_{i} .
$$

These equations may also be obtained from the error E by setting the partial derivatives of E with respect to both c and d equal to zero.
(b) Use the second normal equation of (a) to show that the least squares line must pass through the center of mass, (\bar{t}, \bar{y}), where

$$
\bar{t}=\frac{1}{m} \sum_{i=1}^{m} t_{i} \quad \text { and } \quad \bar{y}=\frac{1}{m} \sum_{i=1}^{m} y_{i} .
$$

23. Let V be the vector space of all sequences σ in F (where $F=\mathbb{R}$ or $F=\mathbb{C}$) such that $\sigma(n) \neq 0$ for only finitely many positive integers n. For $\sigma, \mu \in V$, we define $\langle\sigma, \mu\rangle=\sum_{n=1}^{\infty} \sigma(n) \overline{\mu(n)}$. Since all but a finite number of terms of the series are zero, the series converges. For each positive integer n, let e_{n} be the sequence defined by $e_{n}(k)=\delta_{n, k}$, where $\delta_{n, k}$ is the Kronecker delta. We proved that $\left\{e_{1}, e_{2}, \ldots\right\}$ is an orthonormal basis for V. Define $T: V \rightarrow V$ by

$$
T(\sigma)(k)=\sum_{i=k}^{\infty} \sigma(i) \quad \text { for every positive integer } \mathrm{k} .
$$

Notice that the infinite series in the definition of T converges because $\sigma(i) \neq 0$ for only finitely many i.
(a) Prove that T is a linear operator on V.
(b) Prove that for any positive integer $n, T\left(e_{n}\right)=\sum_{i=1}^{n} e_{i}$.
(c) Prove that T has no adjoint.

Hint: By way of contradiction, suppose that T^{*} exists. Prove that for any positive integer $n, T^{*}\left(e_{n}\right)(k) \neq 0$ for infinitely many k.

